LAUR 80=3249 NS \ 102v3S

v Agr s N e T e s Lt By TR remedy o ( dFRd G The Unded Hates Depdrtreset o Treegy onder corie mt A SRR END W

LA-UR--89-3249
DESO 000685

nrit GENERALL MANY=-BODY SYSTEMS .
ALTHORS: S. A. Trugmsan, T-=11
w HM I ' Proceedings ol the XAT) Advanced Sumser School on Applications

ol Statiuwtical and Fleld Theorv to GCondensed Matter; Evora,
P'ortugal ; Mav, 1989

INNCLAIMER

Thn ot oo prepares] oan soomnt of sth qeavred by aa gpemy of e | noled Sales
tuncpament Nt the | pited Mates Cenciminesn: my 0y apemes lberesd ma 2oy of e
emphate mghes amy aarnly eyuea or mepled or soame am epal iy 0 ey
Tuledy Do the oura o ompleiene 0 worfales o am o hamates appoirsus, poskmt, oo
prears dre kared waeperwents Thal #r wwr skl mod ilonge prn delys osend bty Refer
rlr hriesn toomy proale onmm b oal reelel raes 0 anee b ok e oelemath,
manid miure g o cllernrg e e sty omstReie 0 maply i embernest omn
memiatum 0 Poowmg by I | mided Sales Cancimnu et cw any o spemy dhenec- ! Tl aees
wnl cqummes o it ropteand baein do o md seveaanhy ddaie o el theae o e
U miml "dairs tenrimae ™ of am dpemo theed

[ . 1Y omNm, s eeap R TR L g R A A IR A e ety e o et W g ] o @
. -y 1 [T I | L Pl ewy b o Lo " gl Femged | F vt
Y "ut ] ] o om et g g kT ety g et g g e (el e el i g, ey et P g,

-IER
| OS AARMNOS LosAamos Natorui Labortory

..
g, € omg

A DIRTRIRUTION OF THIS DOLI'MIRY o= oo, -0


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


GENERAL MANY-BODY SYSTEMS

S. A, Trugman

Theoretical Division
Los Alamos Naticnal Laborawory

Los Alamos, NM 87545

INTRODUCTION

The problem nf how to visuahze and somectimes solve a general many-body system is
considered. The ideas arc cstablished in the context of very simple small systems, a Hubbard
model and a coupled clectron-phonon model, both on two lattice sites. These models are also
solved to good approximation in the thcrmodynamic limit, although the Hubbard model is
restricted 10 a small number of holes away from the Mott insulating state. Responsc functions are
also conside.ed.

A fairiy gencral many body Hamiltonian is

Ho=Hy+Hy g+Hopp+Hp | (h

consisting of an clectron or other fermion kinctic energy and electron-clectron interactions, which
may he coupled 0 a bose field such as a phonon The phonons themselves may he nonlincar
thave sell-interactions) ‘The system may be strongly coupled (H,; , and H,; ,, may be large).
One may also add coupling to an extemal dnving ficld, such as an AC clectric ficld. The
methads discussed are nonperturbative, and so differ from the standard method: of diagrammatic
perturhation theory. ! A companson 18 made with diagrammatic methods in the context ol the

random phase approximation



HUBBARD MODEL (SMALL SYSTEM)

The first example is the Hubbard model, which describes interacting clectrons and contains

only the first two terms of Eq. (1):

+ * t
Hy==1'3 (¢ s0+he)y+U Y erore) .
<y, k>s J

The operator cj',, creates an eclectron of spin s on a Wannier orbital on lattce site j. The first
term (electron kinetic energy) causes electrons to hop to nearest neighber sites without changing
their spin.  The last term is a repulsive on site eleciron-electron interaction. To illustrate the exact
solution of Eq. (2) for a small system, consider the problem with two sites, two clectrons, and the
z-component of the spin §,, which is conserved, cqual to zero. (Infinite systems will be

considered later.)

The Hilbert space in coordinate representation is given by

1>=T | (3)
2-= T

> = Tl

4> = | T.

where the first site is on ihe left and the second on the right. The Hamiltonian operating on 1>

connects (has nonzero matrix elements) to states 12> and 3>, State 14> also connects to 12> and

1>, see Fig. (1). The diagonal encrgy of states 12> and 13> is U/, and that of 11> and 14> is 0.,
Note that an interacting many-body problem (containing the product of lour fermion

operators) has been mapped onto a non-interacting one particle tight-binding problem. 1" the

operator h,' creates many-body state 1y > in Eq, (3), the new Hamiltoman is



A=Y1i,(b'by+hc ) +38 b'b . )
]k J

with no interactions (four-fecrmion operators). The sites in the tight-binding problem, however,
represent many-body states, not the usual atomic or Wannier orbitals. It is a general rasult that
one can always cexactly map the ground and excited states of an interacting many-body problem

onto those of a noninteracting one-body problem in this way.

In matnx notation, H is

-t U 0 -
-t 0 U -t
0O -t -t 0

lF 0 -t =t 0]
|
i |
|
This matrix is simple to diagonalize ¢xactly. The four cigenvaluces are
) — "3
(EVE, EL E =0 (U =NU+160=)/2,0, U . UENU“+1607)/2 )
The two lowest cnergy (unnormalized) cigenvectors are

Ho+ld> + a (12>+13>)

€
\'
il

> = >— 0>,
where a =—E /2t iy, > is a singlet staie and |y, > is the S, =0 triplet state. For {/ »¢, the
low ¢energy pant of the Hilbert space is descnibed by

H = onst+J 8, 8,5,

with J =¢4U .

It appears that the singlet and tnplet states are written with incorrect signs.  ‘The signs are in
fact correct, which bnngs up an issue that was glossed over: the ordering of anticommuting
fermion operators. For the problem above, the reference ordenng is to have the up spins operate

hst,



c1Locf, earoeqr 10>, (6)

where i0> is the vacuum. A state with a positive sign is given by operators in the above order,
for example 12> = ¢ ,'l ¢yt !0>. Suppose one had chosen a different ordering convention, such

as putting sile 1 operators first:
¢ :'l (';T C |'¢ C |'r 0> . (7N

The new tight binding model is shown in Fig. (2). The 24 bond sign, for example, is obtained

with the convention of EQq. (7) as follows:
H, 12> ==t L‘{f C1t) g cot 10> =+ Cat Cﬂ 10> =+t 14> .

The cigenvalues of the new problem (Fig. 2) are the same as those of Fig. 1, and the
wavefunctions are ‘‘covanant': (Y. V2. V1. Ws) = (Y1, W2, W3.—-WYy)2. Now a singlet is
written in the conventional way.

This is in fact a type of gauge transformation. An cxample of a geaeral tight-binding modcl
is given in Figure (3). If onc changes the definition of a basis state (c.g. 1¢,> — = 1¢,>). all of
the bonds coming from | ¢, > change sign, as shown in Figure (4). In gencral any loop with an
even number of +t bonds may be transformed into a loop with no +7 bonds by a suitable choice
of gauvge (sign ol basis functions). All +1 bonds may also be removed from bonds that are not
part of a loop, such as 8-9. Howvever, loops with an odd nurnber of +¢ bonds arc frustrated (the
+t bonds may not be gauged away). The gauge transformation gencralizes to 19,> — ¢'?19,>.
where 0 was taken equal to © above,

Simular issues arize in the quantum Hall effect when a magnetic lic'd penctrates a lattice. In
that case a fux through a loop that s an integer times the flux quantum ¢y is the same as sero

lux under a gauge transtomation,



One can wrnte down an approximate ground state of an unfrustraied tight binding model
almost by inspection. First gauge transform away all + bonds. Then all the W, have the same
sign in the groundstate, with y, larger on sites that have a lower cnergy, and more or larger

connected ¢, bonds,

One can do larger Hubbard models exactly. For example, with 2N sites and 2N electrons,

q

half of which are spin up, one must diagonalize a matnx of size { %V ]ﬁ on a side. Six sites yicld
a 400 x 400 matrix, or cquivalently a tight-binding model with 400 sites, which cun be
diagonalized completely on a computer. Ten sites yield 2 63,504 x 63,504 matrix, which can be
solved for the ground and low lying ¢xcited states by the Lanczos method. * There is no exact

solution for the infinite Hubbard model.

POLARONS (SMALL SYSTEM)

The second example is a coupled electron-phonon system, described by

H=z-t'3 (¢ o, +he)+UXnrn, +VE non (8)
<) A>F ] <) ko>

+ XZ(n,T+n/L)(al+u/') +Q Z“;"‘/ .
’ /

where n,r=(:/'f ¢, and Ky=n,t4n, In the 1-d version, clectrons run along a chain, possibly
interacting with cach other on site and on nearest neighbor sites ( U and V terms respectively).
Each site 15 coupled to a harmonic oscillator, so that the oscillator icels an extra force when an
electron 18 on that site, 84 =—-Ax, where x is the phonon coordinate. In terms of the creation

t . .
operator a - for the oscillator,

’i 14
f = (a +d ).
2mw

The last tem s the energy of the osallators, with =R o and the zero point energy subtracted



off. This model i5 for a phonon energy that is independent of k. or optical phonons. (If aj' a,

terms were added to the Hamiltonian, the phonon energy would have a nonzero dispersion.) The
Hamiltonian in Eq. (8) describes the system shown in Figure (5),

For simplicity, consider first a two site problem with | clectron and two phonons,

With
only one clectron present, the U and V' terms do not operate. The basis functions can be taken
cither in posilion or momentum space.

For varicty, and (o compare with the random phase
approximation (RPA), the calculaton will be done in momentum space.

For a two site lauice,
N
only k =0, arc allowed.
There are 2 clectron basis states,

0, >= -L_-( 1,>+102,>)
2

-

: = ! 5
n,>= -:3( l>=12,>)

-~

The cnergy of the first is —¢r and of the second is +r
operators

There are alto two phonon creation

|—

¢ ¢ ¢
dg =~z (ay +dy)
N

tol

¢ +
dey = -=(dy -dy)
v B

P

Fach a” can create arbitrarily many quanta. A many-body state is specitied by

o = Moy i g>

where ¢, =0 or r, and the phonon occupation numbers arc ng=0,1.2...., n,=0,12.. .

The
clectron phonon ineraction conserves momentum.  Its strength is momentum independent o this
model.



The equivalent l-body tght binding modecl consists of two disconnected pieces for this
model, one for each total momentum. The total momentum K =xn piece of the Hilbert space is
shown in Figure (6). The ¢, can be deduced from the 10tal K, ¢ = (K —ntn,) mod2x, so by
specifying the phonon state, one also specifies the electron state. The lowest row of vertices has
q. =T, CIC.

The diagonal cnergy of a site is

E('no.nuf=Q(n0+nﬂ)+(—l)"' (K=r).

The numerical factors in the off-diagonal matrix eclements can be obtained using
a’in>=vn+lln+l> The cnergy in Fig. (6) thercfore increases linearly to the upper right, with
a corrugation as a function of y. In this basis, ¢ appears in a diagonal (sitc) energy, in contrast (0
the rcal-space basis in the previous example, where ¢ is an off-diagonal bond strength, There is

an identical lauice for the K =0 scctor, except that the y corrugations are opposite.

El(ny.ng)=800ng+n)—-(=1)"" (K=0).

To tind the ground state and low lying cxcited states numerically, one truncates the lattice
(keeping states to the lower left, with low diagonal cnergies). The remaining problem is solved
numcrically. One should check that the truncation does not effect the physics, by verifying that
© » wavefunctions and energies of the low lying cigenstates have converged.

‘The interaction with the phonons is said o be retarded or frequency- dependent. In this

tormulation, however, one need not include an explicitly frequency-dependent interaction, but

merely couple in phonon states of various cnergies on an equal footing with all other states.
How do standard diagrammauc methods, such as the random phase approximation (RPA),
compare with solving the cquivalent tight-binding lattice? Consider the question of how the k =nr

phocon cnergy 1s changed by the clectron-phonon interaction.  If A were sero, the bare k& :x



phonon would be an eigenstate of energy — +€2. This is the state (ny,n,)=(0.1) in Fig. (6).
The RPA sums all diagrams of the form shown in Figure (7)., with any number of bubbles. The
vertical line on the Icft cuts through the siate witn one k = phonon and no electron-hole pairs,
which is state (0.1) in Fig. (6). The vertcal line on the right cuts through the stale with an
clectron-hole pair and no phonons, which is the state (0,0). In the exact problem, there are also
matrix clements from state (0.i) o (0.2) and to (1.1). These matrix clements are the verices

shown in Figure (8), which are neglected by the RPA.

The RPA thus kecps only the two states (0,1) and (0,0) and the bond between them. and
throws away the rest of the lattice, as shown in Figure (9). It solves this tiny ‘‘two site'’ problem
exactly. When is this a good approximation? One requires A<t for there (0 be no significant
admixtures of the neglected state (0,2) in the ground state. Furthermore, A « Q is required to
prevent signilicant admixtures of state (1,1), which was also neglected. In this limit however, the
bare phonon state (0,1) is cssentially exact, so that one nced not have bothered with more than

one state. The RPA is thus not very useful for this case.

Vanous response funcuons (Green's functions) can be calculawed direcdy from the

cigenstates.  For example the optical absorption is

aUw) = &;Z!<n|j!(blz&m—(E.—E()))- (9)
L]

where J is the current operator. If the Hilbert space is truncated, a(w) becomes unreliable for

very large m.

LARGE SYSTEMS

A general large many-body problem cannot be solved by any method, including this one.

Consider the hubbard model with 107 sues at arbitrary filling in the momentum space basis. In



this treatment, the first state (noninteracting fermi ground state) connects via L' to an enormous
number of states O ( 10%). . ie problem at this level, which is a very large **star’ tight binding
model (Fig. 10a), is suil straightforward to solve exactly. However, there is no justification tor
stopping at this level. Each perimeter state connects 1o a large number of other states, sometimes
formring loops. and cach of them connects 10 many ncw states, etc.. so the problem finally
becomges intractable. This is illustrated schematically in Fig. (10b). The many-body problem has
still been mapped cxactly onto a one-body tight-binding problem, but one that is too large to

solve.

There is, however, a class of problems that can be solved essentially exactly or o good
approximation on an infinite lattice. These problems describe the quantum dynamics of one cr
several ‘‘defects’ in a weli-understood background. Two examples are: (1Y The problem in
which a small number of electrons interact with optical phonons to form polarons, bipolarons, etc.
on an infinite lattice. (2) The protlem of holes and pairs of holes in the Mott tnsulating state of

the Hubbard model on an infinite lattice in twd or more dimensions.

The polaron problem is the same electron-optical phonon problem described above, but done
on an intinite lattice in real space rather than k-space. The many-body basis states are

s o> ia > in>in 05 0 0>
The tirst ket 1s the electron locauon, followed by the nwaber of phonons on the same site, on
nearest neighbor sites, ctc. Again one constructs an arbitrarily large vanational space. and then
checks that the space is big cnough.

A small vanational space might allow for zero or one phonon on the site that the lectron is
on or on a nearest neighbor site. (A much larger space is used for accurate < uculations.) The

small vanational space can be wrnitten



10

state -1 0O 1 (I
1 ¢ 0 0
2 c 10
3 0O 0 1
4 1 0 0
5 0o 1 1
6 1 1 0
7 1 0 1
5 1 1 1

The headings show the number of phonons on the site to the left of the electron (-1), on the same
site as the eicctron (0), and to the right of the clectror (1).  All translations of thes: states are also

‘cluded in the Hilbert space. The tight-binding lattice is shown in Fig. (11). The vertical bonds
have strength —A, and the others strength —¢. The diagona! energy is zero for state |, €2 for states
2, 3, and 4, and 2Q for states 5 and 6. Different states with the same number represent
translations of a state. For example, the leftmost state 3 represents the state with an electron on
sitc 0 and a phonon on site 1. The middle staie 3 represents the state with an electron on site |
and a phonon on site 2. States 7 :nd 8 form a disconnected part of the Hilbert space and are not
shown. There are 6N states in the Hilbert space. where the number of sites V is infinite. The
Hilbent space is translation invariant, with 6 states per unit cell. The translation invanance implics
that the exact cigenstales obey Bioch’s thecorem. For any crystal momentum k. onc need

diagonalize only a 6 x 6 hermitian matrix. rather than a 6N x 6N matnix,

The ground state cigenfunction of the tight-binding model dcscribes a polaron.  Note that
even with this small Hilbert space, there is already more than one way to propagate through the
Jatice, cither directly along the baselite or through a high loop. The loop route shows that the
polaron can move by making a virtual internal excitation, and then getting nd of it. Different
propagauon routes interfere constructively in the physical polaron. The polaror s never “‘self
trapped,”” but rather 15 delocalized in a Bloch state of wavevector k, possibly with a large

clfecuve mass.
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Plotting the tight-binding eigenvalues as a function of Py gives a graph that looks like a band
structure, although it describes many-body physics. The lowest band is the polaron quasiparticle
energy (&) for the electron dressed with phonons. The higher bands are either excited states of
the quasiparticle or unbound clectron-phonon states. One can examine how the quasiparticle
cnergy, wavcfuncticn, and residue Z vary with k. Figure (12) shows these bands for a jarger
variational Hilbert space that includes 100 variational s:ates per lattice site. Other calculations
with several thousand variational states, involving many phonons in a large neighborhood of the
icctron, have been performed.  Calculations have also been done for bipolarons, nonlincar

phonons, and for the AC conductivity of a polaron. 3

The same method can be applied to ue 2r many-bady problems on an infinite lattice. The
Hubbard mcedel in two dimensions, with one electron per site fcrms 2 Mott insulating state with
antiferromagnetic long-range order.* The problem of one and two holes in the Mott insulating
state and the interaction between the hole has been studied.® In this case the vaniational space
consists of the location of the hole(s), and a number of spin-flips relative to the Neel state in the
vicinity of the hules. The Green's function for hole propagation, which contains cxcited state
information, has also been obtained. ® These studies have used a variational space as large as 609

states per real space lattice site.

SUMMARY

For a small system, one can solve cessentially exactly for the low-lying cigenvalues,
cigenfunctions, and lincar response to an cxtemal probe.  These systems may include electron-
clectron, clectron-phonon, and nonlinear phonon interactions.  Standard diagrammatic techniques,
hke the RPA may be inadequate for these problems, Some infinite systems can be solved exacuy

or to good approximanon by the same technique, which exactly maps a many-body problem onto
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a one-body tipht-binding model.
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Figure Captions

Figure 1 The nght-binding model represents the two site Hubbard model with two electrons,

5

y -

. The bonds are oft diagonal matnx clements of amplitude -«
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Figure 2 The modified tight-binding model for the two-site Hubbard model, using the ordering
convention in Eq. (7). The slashed bonds are off-diagonal matrix elements of amplitude +¢, and
the unslashed bonds of amplitude --¢.

Figure 3 A gencral tight-binding model may contain loops, dead ends, and sites with different
coordination numbers,

Figure 4 A gauge transformation of the previous tight-binding model accomplished by
‘¢, >—— ¢, > The slashed bonds are matrix clements +¢.

Figure § A polaron system in which clectrons hop along a chain. Each site on the chain is
associated with a harmonic oscillator. If an electron, represented by an arrow, is present on a site,
an additionat force is applied to the oscillator on that site.

Figure 6 A portion of the infinite tight-binding model representing a coupled electron-phonon
system. The sector pictured has total momentum K =x. A state (site) is labeled by (ng,n,),
where ng is the number of momentum zero phonons and  n, is the number of momentum r
phonons.  The electron momentum ¢ is shown o the right for cach row. The bonds are off-
diagonal matrix clements of amplitude A times a numerical constant,

Figure 7 A tiagram retained in the RPA approximation.

Figure 8  Somc vertices that are neglected ia the RPA approximation, T, » matrix clement
connecting state (0,1 to state (0,2) is shown diagramatically above, and the onc connecting (0,1)
to (1,11 s shown below.

Figure 9 For this problem, the RPA retaing only the bond and two sites that are shown in
black, discarding the rest of the intinite Tattice,

Figure 10 ) The large *'star' obtained as the finst approximation to the Hubbard model i the
thermaodynamice it The off-diagonal matrix clements are allowed 1o operate only once (b 11
the oft diagonal matnx clements are allowed o act repeatedly, cach of the sites at the cope

connect to many other sites, and cach of those connect to many others, ete, sometimes toming
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loops. (Shown schematically.)
Figure 11  The tight-binding model for a polaron on an infinite lattice. With the small basis sct
of Eq. (10), the tight-binding lattice extends to infinity and is periodic.

Figure 12 The ecigenvalues of the polaron problem is plotted as a function of wavevector k.
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